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Abstract

Classical game theory provides a robust mathematical framework for strategic interactions, yet

it often leads to dilemmas where individual rationality results in collectively suboptimal outcomes.

The introduction of quantum mechanics offers a profound expansion of this framework, promising

to resolve these classical impasses by leveraging physical principles like superposition and entan-

glement. This work establishes a formal bridge between classical and quantum game theory by

mapping traditional strategic concepts onto the language of quantum information. We demon-

strate how players, by utilizing shared entangled qubits and executing strategies as local unitary

operations, can access a vastly larger strategic space than is available classically. This quantum

extension of games is shown to fundamentally alter their underlying dynamics. The primary result

of this analysis is that quantum strategies can dismantle classical dilemmas, exemplified by the

Prisoner’s Dilemma, by establishing novel Quantum Nash Equilibria that are Pareto optimal. It

is conclusively shown that the expected payoffs for players employing optimal quantum strategies

are always greater than or equal to those achievable through any classical means, highlighting a

significant and foundational advantage conferred by the quantum domain.

INTRODUCTION

Some people play poker and win a pot, but John von Neumann played poker and invented

game theory. The modeling of strategic interactions is one of the most recent branches of

mathematics, while also being one of its most applicable forms. Game theory provides a

mathematical framework for analyzing situations involving strategic interactions between

rational decision-makers, termed players [1]. The fundamental elements include a set of

players N , where for each player i ∈ N , there is a set of available strategies Si, and a payoff

function πi (or Ei) that assigns a numerical value (utility) to player i for each possible

combination of strategies chosen by all players [2, 3]. A core assumption is that players act

rationally, seeking to maximize their own payoff given their beliefs about the other players’

actions. Classical games placing two or more players in situations where both may or may

not know the others’ decisions already have established solutions in game theory. When

players gain access to quantum mechanics, how do their new strategies compare to classical

decision-making? Are quantum strategies more profitable than any classical strategy?
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Approaching quantum games requires an introduction to the original games presented in

Von Neumann’s seminal work: Theory of Games and Economic Behavior [4]. This paper

begins by studying his examples, expanding the concept of a game from simple two person

zero sum, to non-zero sum and eventually static games. Along with the classical cases in

each category, their quantum analogues will be developed along with a system to extend

any classical game. These analogies lead to a discussion on the quantum equivalents to

important game theory concepts. Armed with the mechanics of quantum game theory, we

discover advantages over classical strategy in multiplayer games with concrete applications.

Specifically, quantum game theory grants new solutions to classically insoluble games. These

results are finally quantified by demonstrating that quantum strategies have at least equal

payoff (utility) to classical strategies.

I. CLASSICAL TWO-PLAYER GAMES: FOUNDATIONS AND DILEMMAS

This section lays the groundwork for understanding strategic interactions by exploring the

foundational concepts of classical two-player games. We begin by distinguishing between two

fundamental game types: zero-sum games, where players’ interests are in direct opposition,

and non-zero-sum games, which allow for outcomes of mutual gain or loss. Through canonical

examples like ”Matching Pennies” and the ”Prisoner’s Dilemma,” we introduce essential

analytical tools, including the Minimax Theorem for resolving zero-sum conflicts, and the

concepts of Nash Equilibrium and Pareto Optimality for analyzing more complex scenarios.

The discussion culminates in highlighting the central conflict that motivates much of game

theory—the tension between individual rational choices and collective well-being, a dilemma

illustrated when the Nash Equilibrium of a game is not Pareto Optimal.

A. Zero-Sum Games

In a two-player zero-sum game, the interests of the players are diametrically opposed.

Any gain by a player is associated by an equal loss for the other. for For any outcome

resulting from the players’ chosen strategies (s1 ∈ S1, s2 ∈ S2), the sum of their payoffs

is zero: π1(s1, s2) + π2(s1, s2) = 0 [2]. A classic example is Matching Pennies, where each

player reveals a coin, and one player wins if the faces match, while the other wins if they
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differ. The payoff matrix for Matching Pennies is illustrated in Table I. The strategies

employed by players can be either pure or mixed. A pure strategy involves choosing a single

action deterministically, whereas a mixed strategy involves selecting actions probabilistically

according to a specific probability distribution [2, 5]. The central solution concept for zero-

sum games is the Minimax Theorem, established by von Neumann. This theorem guarantees

the existence of an equilibrium value and optimal strategies (which can be pure or mixed)

such that neither player can improve their outcome by unilaterally changing their strategy

[5]. This equilibrium corresponds to a saddle point in the payoff matrix.

Player 1 / Player 2 Heads Tails

Heads (1,−1) (−1, 1)

Tails (−1, 1) (1,−1)

TABLE I. Payoff matrix for the classical two-player zero-sum game: Matching Pennies.

B. Non-Zero-Sum Games

Unlike zero-sum games, non-zero-sum games allow for outcomes where players can achieve

mutual gains or suffer mutual losses, as the sum of their payoffs is not necessarily constant

or zero. The Prisoner’s Dilemma is the canonical example of a non-zero-sum game and

starkly highlights the conflict between individual rationality and collective welfare [3, 6].

In this scenario, two suspects are interrogated separately. If both cooperate (stay silent),

they each receive a moderate sentence. If one defects (testifies) while the other cooperates,

the defector goes free, and the cooperator receives a harsh sentence. If both defect, they

both receive an intermediate sentence. The payoff matrix in Table II illustrates a typical

Prisoner’s Dilemma.

C. Classical game theory tools

Understanding the dynamics of such games requires key concepts. One is the Nash Equi-

librium (NE), which describes a profile of strategies (one for each player) such that no player

can improve their expected payoff by unilaterally changing their strategy, assuming other

players’ strategies remain fixed [1, 5]. In the Prisoner’s Dilemma (Table II), mutual defec-
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Player B

Cooperate (C) Defect (D)

Player A Cooperate (C) (3, 3) (0, 5)

Defect (D) (5, 0) (1, 1)

TABLE II. Payoff matrix for a two-player non-zero-sum game: Prisoner’s Dilemma. This matrix

shows the Pareto optimal outcome (3,3) resulting from mutual cooperation and the Nash equilib-

rium (1,1) resulting from mutual defection.

tion, yielding payoffs (1,1), constitutes the Nash Equilibrium. Although mutual cooperation

would yield a better outcome for both (3,3), defection is the dominant strategy for each

individual player regardless of the other’s choice. John Nash proved that every finite game

has at least one Nash Equilibrium, potentially in mixed strategies [7].

Another important concept is Pareto Optimality (PO). An outcome is defined as Pareto

optimal if it is impossible to make one player better off without making at least one other

player worse off [2, 8]. In the Prisoner’s Dilemma example, the outcome (3,3) achieved

through mutual cooperation is Pareto optimal. From this state, any change in strategy by

one player to improve their own payoff would necessarily worsen the payoff for the other

player (e.g., if Player A defects from (C,C) to gain 5, Player B’s payoff drops from 3 to 0).

The core issue, often referred to as ”The Dilemma” in game theory, arises when the Nash

Equilibrium is not Pareto Optimal. The Prisoner’s Dilemma powerfully illustrates this:

individually rational choices (defecting) lead to a Nash Equilibrium (1,1) that is collectively

suboptimal compared to the Pareto optimal outcome (3,3) that could be achieved if players

were able to commit to cooperation [6]. This highlights the fundamental tension between

individual incentives and group welfare.

II. INTRODUCING QUANTUM MECHANICS TO GAMES

A. Why Quantize?

Classical game theory assumes strategies are chosen from well-defined sets and combined

using classical probability. However, if players have access to quantum resources or interact

via quantum systems, the classical framework may be insufficient. Quantum mechanics
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allows for phenomena like superposition and entanglement, which can fundamentally alter

the strategic landscape and potentially offer advantages unobtainable classically [5, 6].

B. Quantum Representation

To incorporate quantum mechanics, classical game elements are mapped onto quantum

concepts. The fundamental unit of quantum information employed is the qubit. For a game

with two classical strategies, such as Cooperate or Defect, these strategies can be represented

by the orthogonal basis states |0⟩ and |1⟩ of a qubit, which is a vector in a 2-dimensional

Hilbert space H [3, 8]. A key distinction from classical bits is the principle of superposition,

whereby a qubit can exist in a linear combination of its basis states, formally written as

α |0⟩ + β |1⟩, where α and β are complex numbers such that the sum of their squared

magnitudes, |α|2 + |β|2, equals 1. This property allows players to, in a sense, consider

multiple strategies simultaneously [3]. Player actions or strategic choices are then described

by unitary operations (U) acting on the qubit states. These mathematical operations are

reversible and preserve the normalization of the quantum state, ensuring that U †U = I,

where U † is the Hermitian conjugate of U and I is the identity operator [3, 8]. Examples of

such operations include the identity I, which leaves the state unchanged, and the bit-flip X

(Pauli-X operator), which transforms |0⟩ to |1⟩ and |1⟩ to |0⟩.

C. Entanglement

When multiple players are involved, their quantum states reside in a composite Hilbert

space, H = HA ⊗ HB for two players A and B. Entanglement describes specific states in

this composite space that cannot be written as a simple product of individual player states

(i.e., they are non-separable) [3, 8]. Entangled states, like the Bell state 1√
2
(|00⟩ + |11⟩),

exhibit correlations stronger than any achievable classically. This allows for coordinated

strategies and outcomes that have no classical analogue[2, 6]. From a game theory perspec-

tive, these stronger correlations are precisely what can alter game outcomes and strategies.

In a classical game, player’s choices are independent, and any coordination must be explic-

itly agreed upon or inferred through common knowledge. With entangled states, however,

player’s measurements become intrinsically linked, even if they are physically separated and
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cannot communicate. This inherent correlation means that if one player measures their part

of the entangled state, the outcome immediately influences the possible outcomes for the

other player’s measurement without any classical information exchange. This pre-established

non-classical link allows players to execute strategies that are perfectly coordinated, often

leading to a higher probability of achieving a mutually beneficial outcome, or enabling new

equilibrium points that don’t exist in the classical version of the game [7]. It’s this non-local

but perfectly coordinated behavior that give quantum players an advantage, allowing them

to ”pre-agree” on a joint strategy in a way that classical players cannot. Applying entangle-

ment to the Prisoner’s Dilemma, the game begins with both players sharing an entangled

pair of qubits, typically prepared in the Bell state 1√
2
(|CC⟩+ |DD⟩), where |C⟩ (Cooperate)

corresponds to the basis state |0⟩ and |D⟩ (Defect) to |1⟩. A player’s strategy is no longer

a simple choice between C and D, but a choice of a quantum operation (a unitary matrix)

to apply to their individual qubit. A key discovery is the existence of a particular quan-

tum operation which, if applied by both players to their respective qubits, manipulates the

entangled state in such a way that it collapses to the |CC⟩ (mutual cooperation) outcome

upon measurement. This creates a new, stable Nash Equilibrium. If a player knows their

opponent will use this quantum strategy, their best move is to do the same, guaranteeing

the Pareto optimal payoff for both and thus resolving the dilemma. Any unilateral deviation

from this quantum strategy results in a worse payoff for the deviating player, making mutual

cooperation the rational outcome.

D. Measurement

To determine the outcome of a quantum game, a measurement is performed. Quantum

measurements are inherently probabilistic. Measuring a state |ψ⟩ = α |0⟩ + β |1⟩ in the

{|0⟩ , |1⟩} basis yields outcome 0 with probability |α|2 and outcome 1 with probability |β|2.

The state ”collapses” to the measured basis state [3]. For mixed states (probabilistic com-

binations of pure states), the density matrix formalism ρ is used [3, 8]. The expected payoff

for player i is calculated using a corresponding payoff operator π̂i, which is constructed from

the classical payoffs and measurement projectors: π̄i = Tr[ρf π̂i], where ρf is the final state

after players’ moves [3].
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E. Quantization Protocols

Several frameworks exist for structuring quantum games. One of the earliest frameworks,

Meyer’s Approach, imagines a quantum game as a turn-based competition. In a game like

a coin toss, the players use a single quantum object, like a qubit. The game starts with

the ”coin” in a set initial state (e.g., ”Heads”). The first player then performs an action,

which isn’t a physical flip but the application of a specific quantum operation (a unitary

transformation) of their choosing. The quantum coin is then handed to the second player,

who applies their own chosen operation to its new state. After the final player has taken

their turn, the coin’s state is measured. The result of this measurement determines the

game’s outcome and who wins, demonstrating how one player can use quantum tools to

strategically influence an object that is then passed to their opponent [3, 5]. The more

common framework, known as the Eisert-Wilkens-Lewenstein (EWL) Protocol, is designed

for games where players make their moves simultaneously, like the Prisoner’s Dilemma. In

this setup, the game begins with a referee or source that prepares two quantum particles,

such as a pair of qubits, in a special, entangled state. This means their properties are linked,

no matter how far apart they are. One particle is given to Player A and the other to Player

B. The players, who can be thought of as being in separate rooms, then make their ”move”

at the same time by choosing and applying a quantum operation to their own particle.

This choice is their strategy. For example, one quantum operation might correspond to the

classical move ”Cooperate,” while another corresponds to ”Defect.” After they have acted,

the particles are brought back together and measured. The specific correlations guaranteed

by the initial entanglement mean that the outcome of the measurement for Player A is not

independent of Player B’s action. The final combined measurement result determines the

outcome and thus the payoffs for both players, often allowing for new, more beneficial results

that weren’t possible in the classical version of the game. [2, 3, 6].

III. QUANTUM GAMES: NEW STRATEGIES AND OUTCOMES

A. Defining Quantum Games

A quantum game extends its classical counterpart by replacing classical strategy spaces

with Hilbert spaces, allowing players to prepare initial states (possibly entangled) and employ
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quantum operations as their strategies. Payoffs are typically determined by measuring the

final quantum state that results from the players’ actions and then referencing the original

classical payoff structure associated with the measurement outcomes [2, 3].

B. Quantum Strategies

The ability to leverage quantum mechanical phenomena significantly expands the set of

available strategies beyond classical probabilistic choices. A pure quantum strategy typically

corresponds to a player applying a specific unitary operator Ui from an allowed set (such as

SU(2) for games based on single qubits) to their part of the shared quantum state [5, 6].

Beyond these, players can employ mixed quantum strategies. These can be conceptualized

as classical probability distributions over a set of pure quantum strategies. More generally,

a player’s strategy or state can be described by a density matrix ρ, which can represent not

only a probabilistic mixture of pure states but also potential entanglement with an external

environment or other players [1, 7]. In the most comprehensive formulation, any completely

positive trace-preserving (CPTP) map acting on a player’s subsystem can be considered a

representation of a generalized quantum strategy [1].

C. Quantum Equilibria

The concept of equilibrium, central to classical game theory, is adapted and extended

within the quantum framework. A key notion is the Quantum Nash Equilibrium (QNE).

A quantum state ρ constitutes a QNE if no single player i can improve their expected

payoff, π̄i = Tr[ρπ̂i] (where π̂i is the payoff operator for player i), by unilaterally applying

any allowed quantum operation Φi to their subsystem [1, 3, 7]. This condition is formally

expressed as Tr[ρπ̂i] ≥ Tr[(Φi⊗I−i)(ρ)π̂i] for all permissible operations Φi by player i, where

I−i is the identity operation on all other players’ subsystems. For a strict QNE, ρ is often

required to be a product state (ρ = ρA ⊗ ρB), while allowing for entangled states can lead

to related concepts like Quantum Correlated Equilibrium (QCE).

Crucially, entanglement plays a pivotal role in many unique phenomena observed in

quantum games. The presence of entanglement in the initial state shared by players can

lead to the emergence of new Nash equilibria that have no classical counterparts. Conversely,
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classical Nash Equilibria may become unstable or cease to be equilibria when players are

permitted to use quantum strategies, particularly those involving manipulations of entangled

states [2, 6]. The degree of entanglement available often dictates whether, and to what

extent, quantum advantages can manifest over classical strategies [6].

D. Quantum Advantage in Action

Quantum strategies can demonstrably outperform classical ones in several key examples.

As discussed by Meyer [5], in a simple coin-tossing game (PQ Penny Flip), a player utilizing

quantum superposition can force a win with certainty against an opponent restricted to

classical coin flips, thereby demonstrating a clear quantum advantage in a zero-sum setting

[3].

In the Quantum Prisoner’s Dilemma, a significant quantum advantage can arise, partic-

ularly if players share an initially entangled state. For instance, players might each receive

a qubit from a pair prepared in an entangled Bell state, such as 1√
2
(|00⟩ + |11⟩). This

initial entanglement introduces non-classical correlations that are fundamental to how the

quantum version of the game unfolds. Instead of choosing classically to ”cooperate” or

”defect,” a quantum player’s strategy involves applying a unitary operation to their in-

dividual qubit. A common parameterization for such an operation for a single qubit is

Q̂ =

 cos(θ/2) i sin(θ/2)

i sin(θ/2) cos(θ/2)

, where the choice of the angle θ (and potentially other phase

angles for general SU(2) operations) becomes the strategic move. For example, θ = 0 might

map to the classical ”Cooperate” action, while θ = π (or π/2 depending on exact mapping)

could represent ”Defect,” and other values of θ allow for a continuous spectrum of quan-

tum strategies that are superpositions of these classical actions [3, 6]. After both players

apply their chosen unitary operations, the composite quantum state of their qubits evolves.

Subsequently, a measurement is performed on this final state. The outcome of this measure-

ment is probabilistic, with the probabilities of different classical outcomes (e.g., CC, CD,

DC, DD) depending directly on the final quantum state, which in turn depends on the uni-

tary operations chosen by the players and the properties of the initial entangled state. The

payoff for each player is then calculated based on these measurement outcomes, typically

using the payoff values from the original classical Prisoner’s Dilemma matrix. By choosing

10



appropriate quantum strategies in the presence of sufficient entanglement, players can reach

outcomes, like mutual cooperation with higher payoffs, that are not stable Nash equilibria

in the classical version of the game.

In general, it has been shown that the expected payoff for a player using an optimal

quantum strategy is always greater than or equal to the payoff achievable with an optimal

classical (mixed) strategy: π̄quantum ≥ π̄classical [1, 7]. This is because quantum mechanics

expands the available strategy space; classical strategies can be seen as a subset of the

broader set of quantum strategies.

CONCLUSION

The introduction of quantum mechanics fundamentally alters the landscape of game

theory. This paper has charted a course from the foundational principles of classical game

theory, exploring zero-sum interactions like Matching Pennies, non-zero-sum challenges such

as the Prisoner’s Dilemma, and key concepts including Nash Equilibrium, Pareto Optimal-

ity, and the Minimax Theorem, to the enriched strategic domain offered by quantum me-

chanics. We detailed how quantum phenomena, including the representation of strategies

using qubits, the exploitation of superposition, the application of unitary operations, and

most critically, the non-local correlations afforded by entanglement, are formally integrated

into game structures. Protocols were presented as frameworks for this quantization. By

allowing strategies based on these quantum principles, quantum games exhibit new equilib-

rium structures, such as Quantum Nash Equilibria, and can resolve long-standing classical

dilemmas. For instance, the Quantum Prisoner’s Dilemma demonstrated that with suffi-

cient entanglement, outcomes aligning with mutual cooperation (and thus Pareto optimal-

ity) can become stable equilibria. Quantum strategies thus provide players with tools that

can lead to outcomes unattainable through classical means. Our analysis confirmed that

these quantum approaches offer payoffs at least as favorable as optimal classical strategies

(π̄quantum ≥ π̄classical), often enabling significantly improved results and opening new avenues

for analyzing strategic interactions.

Looking towards the future of quantum game theory, a critical challenge lies in studying

the robustness of quantum advantages against the effects of environmental noise and deco-

herence, which are inevitable in any realistic physical implementation. Furthermore, this
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paper has focused on static games, but the application of quantum principles to dynamic

and evolutionary games, where strategies can be learned and adapted over time, remains a

fertile area of research that intersects with the growing field of quantum machine learning.

Finally, translating these theoretical advantages into practical applications, whether in de-

veloping novel quantum algorithms, designing robust quantum cryptographic protocols, or

modeling complex economic and biological systems, represents the ultimate long-term goal

for the field.
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